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ABSTRACT 
 One method to limit calender barring is to vary the offsets of 
the rolls.  The goal is get the caliper travelling from nip to nip 
interfere destructively reducing the vibration.  To predict the ideal 
offsets, a dynamic model of the vibrating stack is required.  
Previous models used point masses, connected by linear springs 
and proportional damping.  This research uses the finite element 
method to add flexible rolls, non-proportional damping and 
complex vibration modes. 
 
INTRODUCTION 
 The conventional calender stack is used to improve the finish 
of the paper after the drying section by pressing the paper in 
successive nips.  At times the calender can start to vibrate for no 
apparent reason.  This vibration, known as calender barring, causes 
further caliper variations [1].  The consequences include reduced 
paper quality, corrugated rolls[2] and increased machine down time 
due to roll maintenance. 
 One cause of calender barring is regenerative tendency [1], [3], 
[4], [5], [6] in which vibrating rolls cause caliper variations, which 
then excite subsequent nips.  By varying the offsets (vertical 
alignment) of the rolls [7], [8], [9], the wrap length can be changed 
and thus influences the time required for a disturbance to travel 
from one nip to the next, which changes the phase relationship 
between barred paper and the vibrating roll.  Traditionally, these 
offsets have been chosen by experienced operators.  Prior efforts 
have aimed at a computational solution.  However, the previous 
model did not account for flexible rolls, as suggested by Parker and 
Epton [10], or complex mode shapes. 
 
METHODS 
 The focus of this research is to add flexible rolls, as in [2], and 
damping that is not proportional to the spring stiffness to the model. 
 In order to accommodate flexible beam elements, a finite element 

solution was used.  A complex eigen solver is required to solve the 
second order differential equation which yields complex natural 
frequencies, modal amplitudes and phase angles. 
 
Finite Element Application 
 By considering the rolls as thin Euler-Bernoulli beams, a two 
noded, four-degree of freedom beam element is used to represent 
the calender rolls.  From the dimensions and masses of each roll, 
the stiffness and mass element matrices are generated. 
 To obtain the spring stiffness and damping of the paper, the 
natural frequencies of the stack are measured using modal analysis. 
 This information is used with the roll masses to calculate the spring 
constants.  The method used was developed by Dr. Stu Shelley at 
the University of Cincinnati and models the stack as a series of 
point masses connected by springs.  These spring constants 
represent the total stiffness of the web and can be divided by the 
trim to get stiffness per unit length.  The spring constants and 
damping coefficients are distributed over the nodes of the mesh 
using a consistent loading scheme to more accurately represent the 
distributed nature of the paper. 
 
Fig. 1. Calender Stack and Finite Element Model 

 
 It is assumed that the calender stack is supported by the king 
roll.  The support for the king roll is represented as a spring and 
damper in parallel whose spring constant is calculated from the 
masses and measured frequencies as above. 
 
Finite Element Solution 
 Once the system is discretized, the equations of motion are 
written as 
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 As described by Tse et al [11], the equation is transformed  
into the form 
         (2) [ ]{ } { }y H y

•





− = 0

           (3) { }y x
x

=












•

        (4) [ ]− =
− −









− −

H
M C M K
I n

1

0

1

 By solving (4) using Hessenberg transformations and QR 
triangularizations as described in [12],[13] and [14], n pairs of 
complex natural frequencies are obtained where 
 ( )n n nrolls nodes per roll= ⋅ ⋅ ⋅ ⋅2        (5) 

 Examining equations (1) and (3) a reverse transformation is 
implemented to get 
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 Equation (6) is a linear algebraic problem yielding a complex 
solution due to the complex frequencies.  These complex mode 
shapes are used in the offset optimisation program. 
 
Offset Optimisation 
 Before the offsets can be selected, it is necessary to quantify 
how good a given offset combination is.  This is performed by 
calculating the work done on the rolls adjacent to subsequent nips 
by the caliper variations.  The work done is termed the regenerative 
tendency. 

Fig. 2. Parameters for Nip Pair n & m 
 
Calculation of Work Done 
 Considering a point mass spring system as in Figure 2, the 
force in the springs and dampers can be calculated for a given set of 
small displacements and small velocities.  Multiplying the force by 
the velocity, the feedback power is obtained. Integrating over one 
period of the disturbances yields the work done.  Mathematically, 
this is written as 
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 This gives the work done for any nip pair n and m.  The 
final expression, shown in Appendix A, contains the maximum 
amplitudes and phase angles of the rolls.  The complex modal 
amplitudes and phase angles are substituted into these variables 
in order to obtain the work associated with a particular mode. 
 The time required for the sheet to travel between the nip pair in 
question is also present in the solution.  When the offsets are 
varied, the paper wrap length between nips changes and phase 
between the caliper variation and the roll velocity changes which 
results in a change in the work done for that nip pair. 
 
Total Regenerative Tendency 
 The expression for the work done requires a given set of 
offsets, one vibration mode, one machine speed and a single nip 
pair.  To obtain the total regenerative tendency, the expression must 
be summed over all the nip pairs and all the modes.  Since the 
expression is derived for a lump mass system, it is necessary to treat 
each vertical arrangement of nodes in the finite element mesh as a 
separate mass-spring system.  When of these slices of the calender 
stack are added together, the total regenerative tendency is obtained 
for the whole stack and for all the natural frequencies as 

 ( )R Wij mde slc ij mde slc
j i

n

i

n

mde

n

slc

n rollrollenode

= +










= +

−

=

−

==
∑∑∑∑ , , , ,

mod

1

1

1

2

11

W  (9) 

 
 Only positive work is considered in equation (9).  Previous 
work with the old model discovered a closer correlation to 
empirical data when this form is used.  Since this research uses the 
previous program as comparison, the same general form of the 
equation is retained. 
 For each different set of offsets, this calculation must be 
repeated.  The resulting total regenerative tendencies are compared 
for the various offset combinations and the offset selection with the 
minimum is returned as the optimal setting. 
 
RESULTS 
 Data files were obtained for various machines.  The machine 
characteristics, including masses, roll dimensions and spring 
constants were used in the new program’s input files.  The natural 
frequencies and mode shapes were calculated for both systems and 
compared.  Given the identical offset limits and iteration resolution, 
each program determined the optimal offset setting for each file. 
 
 
Fig. 3. Offset Predictions for Various Mills 

 
 As shown in Figure 3, offsets predicted by the current program 
did not correlate with the old program.  However, the old program 
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attained limited success which means that different results would be 
desired. 
 Some aspects of the new program differ greatly from the old 
program.  One significant difference is the number of modes 
available to determine the regenerative tendency.  With the old 
program, a five roll stack gave five mode shapes.  Now with five 
rolls, one can obtain up to 100 modes.  The question arises, which 
modes are important?  For these comparisons, the first twenty 
modes were included in the calculation.  Future research could 
include determining the frequency response function and then 
weighting each mode based on the relative magnitude. 
 The new program still needs to be tested.  It is expected that 
the new configuration will reduce the barring on the stack.  This 
would need to be done on several operating stacks to test for 
consistency. 
 
CONCLUSION 
 The offsets predicted by the new model differed greatly from 
the old model in many cases.  The old program gave inconsistent 
results in reducing barring, it is expected that the new model would 
yield different results.  The new program needs to be tested on 
several operating calender stacks to verify that its predictions 
consistently decrease the amount of barring. 
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APPENDIX A 
Energy Feedback 
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where 
 kn   is the nth spring constant 
 cn  is the nth damping constant 
 ω i    is the ith natural frequency 
    is the total mode shape amplitude of the xth roll for Ax i,

   the ith mode 
 φ m i,   is the mode shape phase angle for the mth roll for  

   the ith mode 
 tnm  is the time required for a disturbance traveling 
   from nip n to m. 
 
APPENDIX B 
Detailed Results 
Table I. Mill A Frequencies  Table II. Mill B Frequencies 
Mode     Frequencies (Hz)  Mode    Frequencies (Hz) 
   New   Old         New   Old    
    1  4.252  4.000      1  5.291  3.440 
    2  7.430  127.8      2  9.602  156.5 
    3  60.67  250.8      3  38.04  312.5 
    4  133.2  363.8      4  100.6  568.1 
    5  148.9  448.7      5  196.4  936.1 
    6  165.6         6  229.0 
    7  189.6         7  234.5 
    8  255.4         8  254.1 
    9  259.9         9  291.5 
 
Table III.Mill C Frequencies  Table IV.Mill D Frequencies 
Mode     Frequencies (Hz)  Mode    Frequencies (Hz) 
   New   Old         New   Old    
    1  4.956  5.000      1  5.218  5.389 
    2  8.640  89.54      2  9.216  84.50 
    3  77.75  181.4      3  50.55  173.4 
    4  85.21  266.7      4  78.78  238.0 
    5  100.9  350.7      5  92.18  298.3 
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    6  138.4  456.5      6  120.0  354.6 
    7  167.5         7  134.8 
    8  186.5         8  159.0 
    9  199.4         9  170.3 
 
Table V. Mill A Offsets      Table VI.Mill B Offsets 
 Roll    Offsets (mm)   Roll      Offsets (mm)  
      New   Old              New   Old    
    5     6.35   12.7     5    -8.47   7.62 
    4     2.79   5.08     4    -12.7   2.54 
    3     12.4   12.7     3     4.23   2.54 
Queen   -7.87  -1.52  Queen   -4.23   0.00 
 King    0.00   0.00   King    0.00   0.00 
 
Table VII.Mill C Offsets      Table VIII.Mill D Offsets 
 Roll      Offsets (mm)   Roll      Offsets (mm)  
      New   Old              New   Old   
    6    -9.17  -6.35     6     3.97  -2.33 
    5     10.6  -3.97     5     12.0  -12.7 
    4     9.17   5.56     4     12.7  -9.63 
    3     12.0  -4.76     3    -12.0   12.6 
Queen    4.94  -3.97  Queen   -12.7   1.38 
 King    0.00   0.00   King    0.00   0.00 
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